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Cooperative transport in nanochannels
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Channel transport of different species of particles is viewed usually only in terms of competition and selectivity.
In this paper we show that transport of one species may be promoted by the presence of another and that both
may even mutually cooperate. We investigate a discretized Markovian model of nanochannel transport via
in-channel sites, allowing for the simultaneous transport of several different species of particles; interaction
between transported particles is included via the condition of single occupancy on a channel site. By numerically
solving the model exactly, particularly an analysis of situations of crowding in the channel is possible and we
observe three situations: mutual cooperation, promotion of one species at the cost of the other, and mutual
competition. The physical situation has a strong nonequilibrium character as Onsager’s relations on coupled
flows do not hold.
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Particle transport through channels is of paramount impor-
tance in many fields, ranging from life sciences to nanotech-
nology [1,2]. Two main questions were addressed in the past:
How is optimal transport achieved and how can a channel
provide selectivity? Optimal transport was shown to depend
on a tuning of particle-channel interactions, e.g., binding or
entropic trapping [3–7], channel blocking and crowding as a
result of interparticle interaction [8–11], and particle–channel-
end interaction [12,13]. Selectivity means that a channel favors
transport of one species, which competes for channel access
with other species. This can be achieved by differential channel
affinities, as simulations [14] and analytical models [12] have
demonstrated. However, selectivity implies that one species
is favored by a stronger in-channel affinity at the cost of the
other, i.e., one has an asymmetric competitive scenario. In this
paper we will address whether there may also be promotion
of one species by the other and whether there may be even
cooperation of species of particles. Analysis is performed in
a spatially discrete model of channel transport of two species
that is exactly solvable numerically. It explicitly conserves the
spatial correlations related to interparticle interaction and does
not average them out, as it is done in mean field approaches.

We consider the transport of two species A and B through
a channel that connects two baths 1 and 2 with respective
particle concentrations of each species inside, (c1,A,c2,A) and
(c1,B,cc,B ). The driving forces inducing transport through the
channel are the concentration gradients. In addition, transport
is affected by interparticle and particle-channel interactions.
A discretized model of the spatial channel positions, labeled
by i = 1, . . . ,N , is used. Interparticle interaction is reflected
by the fact that one spatial position may only be occupied
by one particle, i.e., a particle inside the channel can only
move to a vacant spatially neighboring site. The respective
particle-channel interactions are described by a potential
�

(A,B)
i . Outside the channels, i.e., in the baths, the potential is

set to zero. The transition rate for a particle of species (A,B)
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to jump from position i to a free neighboring position i ± 1 is
then given by [15]

r
(A,B)
i→i±1 = 1/τ

(A,B)
0 exp

[−(
�

(A,B)
i±1 − �

(A,B)
i

)
/2

]
, (1)

where the time constant τ0 determines the mobility of
the particle, which is assumed to be constant within the
channel. Under equilibrium conditions detailed balance holds,
ri→i±1/ri±1→i = e−(�i±1−�i ). Note that we normalize ener-
getic quantities to kT , e.g., �/kT → �, with the Boltzmann
constant k, and time to τ0, i.e., t/τ0 → t , which leaves
energetic parameters as well as flows and rates dimensionless.

We assume symmetric exchange dynamics at the channel
ends. Hence the rates with which particles enter a vacant
entrance position of the channel from the bath 1 or 2 with
concentration c

(A,B)
1 or c

(A,B)
2 can be defined as

rbath1→i=1 = k
(A,B)
+ c

(A,B)
1 e−�

(A,B)
1 /2,

(2)
rbath2→i=N = k

(A,B)
+ c

(A,B)
2 e−�

(A,B)
N /2.

Correspondingly, the rates with which particles leave the
channel ends are

ri=1→bath1 = k
(A,B)
− e�

(A,B)
1 /2,

(3)
ri=N→bath2 = k

(A,B)
− e�

(A,B)
N /2.

Note that these rates respect the vanishing potentials in the
baths.

A channel state σ is completely described by a state variable
σ = (σ1, . . . , σi, . . . , σN ) where the value of its components
σi indicates whether the spatial state i is either empty or
occupied by one particle of species A or B [16]. So our state
space is � = {σ |σ = (σ1, . . . , σN ), σi = 0,A,B} and it has
dimension 3N . We consider the dynamics of this state space as a
continuous Markov process. The evolution of the probabilities
P = [Pσ (t)]σ∈� to find the channel in the respective states is
then determined by a master equation

d

dt
P(t) = �P(t), (4)

where the 3N × 3N matrix � consists of the transition rates
λσ→σ ′ between channel states σ and σ ′. These are given by the
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rates in Eqs. (1)–(3) if σ ′ can evolve from σ by the transition of
a particle from its original position to a neighboring position,
under the constraint that the above-mentioned interparticle
interactions hold. Otherwise the transition rate between states
is zero. Particle flow between position i and i + 1 is

J
(A,B)
i,i+1 (t) =

∑

σ∈�

Pσ (t)
[
r

(A,B)
i→i+1|σi |(1 − |σi+1|)

− r
(A,B)
i+1→i |σi+1|(1 − |σi |)

]
, (5)

with |σn| = 1 when the position n is occupied by either species
and otherwise |σn| = 0. Hence the terms |σi |(1 − |σi+1|)
ensure that a given state σ contributes only to flow when the
position i is occupied and i + 1 is empty and vice versa in the
reverse direction. The above equation also holds for flow at
the channel ends, with the modification that transitions to the
baths are not restricted by the particles therein.

We consider the steady state, i.e., the probability distribu-
tion obeys

�P s = 0. (6)

Particle flow along the channel is then constant in space, i.e.,
J

(A,B)
i,i+1 ≡ J (A,B) is independent of i. Here P s and hence flow

via Eq. (5) can be numerically determined exactly.
We consider two species (Fig. 1) and start from equilibrium,

i.e., concentration gradients and hence flows of both vanish.
Increasing the gradient of one species monotonically enhances
its flow, whereas the dependence on channel length exhibits the
opposite effect. For higher gradients flow of this species shows
a saturation behavior, which results from channel blocking
impeding flow, and is well known from single-species transport
[10]. In contrast, while the concentration gradient of the second
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FIG. 1. (Color) Flow of the driving species J (A) (top) and driven
one J (B) (bottom) vs concentration gradient of the driving species A,
for different channel lengths N = 2, . . . ,5. Species A is inert, i.e.,
�

(A)
i ≡ 0, and its concentration in bath 2 is fixed to k+c

(A)
2 = 0.1. The

gradient of species B vanishes, k+c
(B)
1 = k+c

(B)
2 = 0.1, and it exhibits

a constant attractive particle-channel interaction, �
(B)
i ≡ −2. We set

k− = 1 for A and B.
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FIG. 2. (Color) Steady state probability of σ = (A,B) (solid line)
and ς = (B,A) (dashed line) vs the concentration of the driving
species A in bath 1, for a channel length N = 2. Other parameters
are the same as in Fig. 1.

species remains zero, its flow nevertheless also increases and
eventually runs through a maximum before asymptotically
approaching. The latter is obviously a consequence of the
eventual expulsion of the second species from the channel.
Interestingly, channel length has only moderate effects on flow
of the second species. In the following we will call the first
species the driving species and the second the driven species.

This cooperative phenomenon, i.e., that one species induces
flow of the other, has its origin in entropic forces built up by the
driving species within the channel, a phenomenon also known
from, e.g., osmosis [17,18]. The concentration gradient of the
driving species favors the probability of channel states that
contain both species and in which the ordering of particles of
the driving and the driven species biases transitions of the latter
in the direction of this gradient (see Fig. 2). In the simple case
of two spatial positions within the channel, there exist only
two states in which both species are present in the channel,
namely, σ = (A,B) and ς = (B,A).

Comparing Figs. 1 and 2, it can be seen that the increase of
flow of the driven species B with increasing concentration
gradient of A follows the rise of the probability of state
(A,B); in contrast, its further decrease follows the decrease
of the probability of state (B,A). It is the interplay of
these concomitantly occupied multispecies states that leads to
the flow of the driven species.

It should be emphasized that solely entropic forces induce
the bias of flow of species B. It is also important to note
that the intuitive picture that a flowing species A picks up
particles of species B on its way through the channel, which
is the base of “knock on” models of channel transport [19], is
wrong, as we model the dynamics between states as a Markov
process, i.e., inertia is absent, and interparticle interaction
solely occurs on the base of occupied spatial positions, i.e.,
entropic constraints. Note that the cooperation of two species
demands the interaction of both within the channel, i.e., the
channel must be capable of containing at least one molecule
of either species simultaneously. So, for molecules larger than
the channel length this mechanism does not work.

Cooperation of two species is not limited to the situ-
ation of vanishing gradient of the driven species. Instead
the driven species may even flow against its concentration
gradient (Fig. 3). Zero flow of the driven species requires a
sufficiently strong oppositely directed concentration gradient
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FIG. 3. (Color) Gradient of a driving species A promotes flow
of B against its concentration gradient (solid lines) (k+c

(B)
1 = 0.1,

k+c
(B)
2 is varied, and k+c

(A)
2 = 0.1). Other parameters are the same as

in Fig. 1. In the absence of a gradient of A (dashed lines), flow of B

simply vanishes with its concentration gradient.

log10(c(B)
1 /c

(B)
2 )J (B)=0 < 0. Interestingly, a longer channel is

more effective in maintaining flow of the driven species against
its concentration gradient, as log10(c(B)

1 /c
(B)
2 )J (B)=0 shifts to the

left with increasing channel length. If flow of species B is
antiparallel to its concentration gradient its transport-related
entropy production is negative Ṡ(B) = J (B)�μ(B) < 0, where
�μ = ln(c(B)

1 /c
(B)
2 ) is the difference of the chemical potentials.

This negative entropy production is more pronounced in longer
channels [16]. It results from the fact that a concentration
gradient of a driving species has more options of building up
entropic forces in a longer channel, i.e., this entropy-mediated
coupling of the two species is stronger in the longer channel,
which increases the efficiency of the driving species. Note that
this feature of longer channels may also explain why flow
of the driven species in Fig. 1 is only moderately dependent
on channel length and not, as one would intuitively expect,
inversely related.

Up to here scenarios were investigated where there is a
driven species profiting from a driving one, however at the cost
of the latter. The question arises whether there exist situations
where both species cooperate, i.e., both species drive each
other mutually. This implies that flow of either species is
larger in the presence of a concentration gradient of the other
species when compared to a vanishing gradient of the latter.
Mathematically this reads

J (B)(�c(A),�c(B)) − J (B)(0,�c(B))︸ ︷︷ ︸
no gradient of A

> 0,

(7)
J (A)(�c(A),�c(B)) − J (A)(�c(A),0)︸ ︷︷ ︸

no gradient of B

> 0.

Figure 4 shows that there are four zones describing the degree
of competition and cooperation of both species. Depending on
the sign of the flow differences in Eqs. (7) we have competition
at the cost of both (both signs negative), either promotion of
one species (positive sign) at the cost of the other (negative
sign), or cooperation (both flow differences with positive sign).
Note that the sign of the flow difference in Eqs. (7) is the same
as that of the corresponding entropy production difference
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FIG. 4. (Color) Cooperation and competition of two species for
parallel directing concentration gradients. Concentration in bath 2
is held constant for both species, k+c

(A)
2 = k+c

(B)
2 = k+c(A/B)

eq = 0.1,
whereas that of bath 1 is increased from equilibrium. Channel length is
N = 3, attractive particle channel interactions are chosen as �

(A)
i ≡

−3 and �
(B)
i ≡ −4, and we set k− = 1 for both species. Species

B is promoted by A when its flow is higher in the presence of a
concentration gradient of A compared to the situation in its absence
[see Eq. (7)].

�Ṡ(A,B) = �J (A,B)�μ(A,B). To understand the phenomena of
cooperation one has to consider the different entropic effects
driving and hampering the particle of one species, e.g., B. One
is the concentration gradient of B and the other two effects
are related to the gradient of A, namely, an entropic force
favoring occupation configurations that bias transitions of B

in the direction of the gradient of A. The other effect is directed
oppositely and results from channel blocking by A. This force,
which is proportional to the gradient of A, hampers flow of B.
For a sufficiently small range of the gradient of A, blocking
of B is inferior to supporting flow, i.e., B is promoted by A.
The same holds vice versa for the effect of the gradient of B

on flow of A. In the overlap of concentration ranges in which
both species are mutually promoted by the other, cooperation
is present.

It is tempting to try to describe the coupling between the
flow of both species in terms of flows and forces in thermody-
namic systems that, although being out of equilibrium, retain a
notion of local stationarity. Using the chemical potential as the
driving force of the particle flux �μ ∝ ln(c1/c2), this would
lead to

J (A)(�c(A),�c(B)) = L(A,A)�μ(A) + L(A,B)�μ(B),
(8)

J (B)(�c(A),�c(B)) = L(B,A)�μ(A) + L(B,B)�μ(B),

with Onsager’s theorem stating the equivalence of the cross
coefficients

L(B,A) = L(A,B). (9)
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FIG. 5. (Color) Flow of a driven species [B (red) and A (blue)],
with equal concentrations in both baths (k+c1 = k+c2 = 0.1), vs the
gradient of the driving (reciprocal) species. Its concentration in bath
2 is held constant k+c2 = 0.1. We set k− = 1 for either species and
channel length is N = 2. Species B exhibits an attractive channel
interaction �

(B)
i ≡ −2 and species A is inert �

(A)
i ≡ 0. The circle

marks the concentration range near the equilibrium point k+c1. The
dashed line, as it is the tangent of both the red and blue curves at this
point, demonstrates that flow of both species exhibits the same linear
dependence on the reciprocal concentration gradient (of the driving
species), which is the quintessence of the Onsager theorem.

A comparison with the relation (7) shows that in our case
there should be, depending on the sign of the cross coefficient,
either only cooperation (positive sign) or competition (negative
sign), respectively, independent of concentration. However, as
shown above, this is not the case.

That Onsager’s relation breaks down here (for a more
detailed discussion see Ref. [16]) becomes evident not only
by the dependence of cooperation and competition on the con-
centration gradients of the respective species. It is also reflected

by the dependence of the driving effectiveness on the particle-
channel interaction. To study this more closely, we consider
two species with different particle-channel interactions. Recip-
rocally the flow of one species is analyzed as a function of its
partner’s concentration gradient (Fig. 5), whereas its own gra-
dient is set to zero. Near equilibrium the reciprocal dependence
of flow of one species on the gradient of the other is identical, as
Onsager’s relation (9) predicts J (B)(�c(A) = x,�c(B) = 0) ≡
J (A)(�c(A) = 0,�c(B) = x). However, this relation only holds
in a small range near equilibrium, encircled in Fig. 5, but fails
for a further increase of the driving gradient, when a binding
site of the driven species increases its transport effectiveness.
What remains to be analyzed is how this selectivity of one
species is related to cooperation and competition of the two
species.

In a Markovian model of nanochannel transport that
is numerically exact solvable we could demonstrate how
transport of a driving species promotes that of a driven one
by building up biasing entropic constrains. However, these
entropic constraints may also mutually hamper flow due
to crowding, which depends on particle concentrations and
particle-channel interaction. As these parameters determine to
what extent entropic constraints promote or hamper flow of
each species, they also define whether two species mutually
cooperate, whether one species promotes transport of the other
at its own cost, or whether there is pure competition hampering
transport of both species.
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